

Design, Development and Automated Verification

of an Integrity-Protected Hypervisor

Sagar Chaki, Amit Vasudevan, Limin Jia, Jonathan McCune, and Anupam Datta

July 16, 2012

CMU-CyLab-12-017

CyLab

Carnegie Mellon University

Pittsburgh, PA 15213

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
16 JUL 2012 2. REPORT TYPE

3. DATES COVERED
 00-00-2012 to 00-00-2012

4. TITLE AND SUBTITLE
Design, Development, and Automated Verification of an
Integrity-Protected Hypervisor

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University,CyLab,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Hypervisors are a popular mechanism for implementing software virtualization. Since hypervisors execute
at a very high privilege level, they must be secure. A fundamental security property of a hypervisor is
memory integrity ? the hypervisor?s memory must not be modified by software running at a lower
privilege level. In this paper, we present a methodology ? called DRIVE ? for designing developing, and
verifying hypervisors to ensure memory integrity. DRIVE combines the power of architectural constraints
(captured by a set of system properties and verification conditions) with that of formal analysis (used to
discharge the verification conditions). We prove that any hypervisor satisfying the DRIVE properties and
verification conditions has memory integrity. We validate DRIVE by using it to develop a hypervisor called
XMHF for multi-core systems. In particular, we show how to ensure the DRIVE properties in XMHF by
combining hardware virtualization support with design and development decisions. We also show how to
discharge the DRIVE verification conditions on XMHF using the CBMC model checker. CBMC verified
XMHF?s implementation ? about 4700 lines of C code ? in about 80 seconds using less than 2GB of RAM.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

13

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Design, Development, and Automated Verification of an
Integrity-Protected Hypervisor∗

Sagar Chaki Amit Vasudevan Limin Jia Jonathan McCune Anupam Datta

Carnegie Mellon University, Pittsburgh, PA, USA

chaki@sei.cmu.edu amitvasudevan@acm.org liminjia@cmu.edu
jonmccune@cmu.edu danupam@cmu.edu

ABSTRACT
Hypervisors are a popular mechanism for implementing software
virtualization. Since hypervisors execute at a very high privilege
level, they must be secure. A fundamental security property of a
hypervisor is memory integrity – the hypervisor’s memory must not
be modified by software running at a lower privilege level. In this
paper, we present a methodology – called DRIVE – for designing,
developing, and verifying hypervisors to ensure memory integrity.
DRIVE combines the power of architectural constraints (captured
by a set of system properties and verification conditions) with that
of formal analysis (used to discharge the verification conditions).
We prove that any hypervisor satisfying the DRIVE properties and
verification conditions has memory integrity. We validate DRIVE
by using it to develop a hypervisor called XMHF for multi-core sys-
tems. In particular, we show how to ensure the DRIVE properties
in XMHF by combining hardware virtualization support with de-
sign and development decisions. We also show how to discharge
the DRIVE verification conditions on XMHF using the CBMC model
checker. CBMC verified XMHF’s implementation – about 4700 lines
of C code – in about 80 seconds using less than 2GB of RAM.

General Terms
Security; Verification; Hypervisor; Integrity; Model Checking; De-
sign

1. INTRODUCTION
Hypervisors [54] are increasingly used on modern computing plat-
forms, including desktops, servers, mobile and cloud comput-
ing [25, 55]. A hypervisor is a mechanism to help implement
a virtual computing platform. It sits between the hardware and
one or more “guest” operating systems, presenting to the guests
a virtual operating platform and managing their execution. Hy-
pervisors have proved to be an effective means to improve hard-
ware utilization, reduce power and cooling costs, and streamline
backup, recovery, and data center management, thus leading to
their widespread adoption in practice.

However, from a system security perspective, hypervisors are yet
another maximally privileged software component in the trusted
computing base. While they are always designed and implemented
∗This work was partially supported by NSF grants CCF-
0424422, CNS-1018061 and CNS-0831440, by ARO contracts
W911NF0910273 and DAAD-190210389 to Carnegie Mellon Cy-
Lab, and by the Department of Defense under Contract No.
FA8721-05-C-0003 with Carnegie Mellon University for the op-
eration of the Software Engineering Institute, a federally funded
research and development center.

to meet stringent performance and feature requirements, formal as-
surances about their security and functional correctness properties
are often ignored. In several instances, vulnerabilities have been
reported in deployed hypervisors (e.g., [1–7, 46, 70]), which have
subsequently been patched. Recognizing that iterative patching of
discovered vulnerabilities is both expensive and dangerous as hy-
pervisors and related systems software become more complex and
tightly interwoven into critical software systems, there have been
several efforts at verifying security-relevant properties of the source
code of these systems [22, 40, 45, 68]. However, most of these ef-
forts have required significant manual effort.

Against this background, we make two contributions. Our first con-
tribution is a methodology for designing, developing, and automat-
ically verifying hypervisors to ensure memory integrity. Roughly,
memory integrity means that the hypervisor memory is only modi-
fied by software running in privileged mode. In particular, this im-
plies that guests are unable to modify hypervisor memory directly.
We focus on memory integrity because it is a key security prop-
erty for virtualized systems. Without memory integrity, portions of
the hypervisor that manage the isolation of memory pages between
guests are open to malicious modifications, thereby allowing one
guest to read and modify the code or data of another guest or the
hypervisor itself. Memory integrity is therefore necessary for other
important security goals, such as data secrecy and availability of
the hypervisor as well as guests.

We call our methodology DRIVE – “Designing hypervisors for Rig-
orous Integrity VErification”. Intuitively, DRIVE is composed of a
set of hypervisor properties, a set of verification conditions required
to be true of the hypervisor, and a proven claim that the proper-
ties and verification conditions entail the hypervisor’s memory in-
tegrity. Thus, DRIVE combines architectural constraints (expressed
by the system properties and verification conditions) with that of
automated formal analysis (used to discharge the verification con-
ditions). Specifically, DRIVE stipulates the following properties:

1. The hypervisor architecture is modular (property MOD)—it
includes an initialization function that runs when the system
starts executing and a set of intercept handlers that are in-
voked when certain events are caused by guests (e.g., I/O
operations, interrupts) and devices (e.g., direct memory ac-
cess). Following prior work in the security literature [32,49],
we define the capabilities of the adversary against the hyper-
visor in terms of the hypervisor interfaces (i.e., the intercept
handlers) that it can invoke with arbitrary inputs.

2. The hypervisor includes a mandatory access control mecha-

nism to mediate access to hypervisor memory in unprivileged
mode (property MAC).

3. The hypervisor has control flow integrity [8], i.e., the control
flow during the execution of H always respects its source
code (CFI).

4. The initialization function executes atomically in a single-
threaded environment and each intercept handler also exe-
cutes atomically in a single-threaded environment (ATOM).

In addition, DRIVE includes two verification conditions that state
that memory integrity holds after the initialization function exe-
cutes and is preserved by every intercept handler. Our main result
(Theorem 1) is that any hypervisor satisfying the DRIVE properties
and verification conditions has memory integrity.

Even though a virtualized system is inherently concurrent – e.g.,
guests are multi-threaded and execute on multiple cores – an impor-
tant feature of DRIVE is that discharging its verification conditions
requires us to verify only sequential programs. The main reason be-
hind this is that the system properties mandated by DRIVE enable
us to “sequentialize” (see Definition 1) the semantics of the target
virtualized system. Verification of sequential programs is recog-
nized to be more tractable than that of concurrent programs. Thus,
DRIVE concretizes the idea [15,59,69] that architectural constraints
enable more effective analysis for ensuring quality attributes. Fur-
ther details are presented in Section 3.

Our second contribution is the development of a hypervisor called
XMHF [65] using DRIVE. In particular, we show how the DRIVE
system properties are ensured in XMHF by a combination of hard-
ware virtualization primitives, and design and development deci-
sions. In addition, we show how the DRIVE verification condi-
tions are discharged on XMHF using the software model checker
CBMC [19]. CBMC discharged the verification conditions on the
entire XMHF runtime – about 4700 lines of C code – in about 80
seconds using less than 2GB of RAM (see Section 4.6 for more
details).

The verification of XMHF was not only automated, but also devel-
opment compatible. More specifically, it was engineered to be re-
peatable with minimal effort as the implementation of XMHF was
modified. In particular, this means that the verification required no
manually supplied invariants or annotations. Development compat-
ibility was extremely useful as XMHF was verified repeatedly and
routinely (in fact, as part of its build process) during development.
Further details about the engineering of XMHF verification and its
development compatibility are presented in Sections 4.3–4.5.

Indeed, our experience with XMHF has led to the belief that DRIVE
is compatible with – and would aid – cost-effective software main-
tenance. Maintainability is a desirable quality attribute of system
software, such as hypervisors, which typically have long life spans.
History suggests that disentangling development and evaluation for
desired security properties of software [17,23,24,28,33,34,60,62,
63] is extremely expensive. In the case of general software as-
surance, maintainability is often aided by a set of standards [64]
for evaluating whether a patch or other change warrants full re-
evaluation. We expect that DRIVE would play a similar role in the
context of hypervisor integrity.

From here on, unless otherwise mentioned, we use the term in-
tegrity to refer to memory integrity. The rest of this paper is or-

ganized as follows. Section 2 provides background on hypervisors,
hardware virtualization primitives, and memory integrity. Section 3
presents the DRIVE methodology. In Section 4 we describe our
experience in applying DRIVE to develop and verify XMHF in a
development compatible manner. In Section 5, we survey related
work. Finally, we discuss important issues raised by this research
and conclude in Section 6.

2. BACKGROUND
A hypervisor is a popular hardware virtualization technique that al-
lows multiple operating systems, termed guests, and virtual devices
to run concurrently on a host computer. It is so named because it is
conceptually one level higher than a supervisory (OS kernel) pro-
gram. The hypervisor presents to the guests and devices a virtual
operating platform and manages their execution. In general, the
guests consist of multiple instances of a variety of operating sys-
tems sharing the virtualized hardware resources. The guests and
devices are untrusted and constitute the attacker.

2.1 Virtualization Primitives
We focus on hypervisors that rely on certain hardware virtualization
primitives. These primitives are supported by current x86 comput-
ing platforms [11,43], and are also making their way on embedded
ARM architectures [12]. In particular, we are interested in hard-
ware virtualization primitives that enable the following features:

• The CPU executes in two overarching modes: (a) host-mode
(or privileged mode) – where the hypervisor executes, and
(b) guest-mode (or unprivileged mode) – where the guests
execute. The privileged and unprivileged modes have sepa-
rate address spaces and CPU registers.

• At system boot time, the hypervisor is able to execute a des-
ignated piece of code before the attacker has access to system
memory. This is used by the hypervisor to correctly initialize
memory protection mechanisms.

• The execution state of each guest is maintained in a separate
data structure. This is important for guest event handling, as
described next.

• The hypervisor is able to associate intercept handlers with
certain events caused by the attacker. Specifically, these
events are caused by guests (e.g., instructions, I/O oper-
ations, exceptions and interrupts) and devices (e.g., direct
memory access). The hardware ensures that whenever such
an event e occurs, the following sequence of actions occur:

1. The execution state of each guest is saved in its own
data structure.

2. CPU execution is switched to privileged mode.
3. The intercept handler for e is executed.
4. CPU execution is switched back to unprivileged mode.
5. Execution state of each guest is restored and guest exe-

cution is resumed.

Figure 1 shows a high level architectural view of a virtualized sys-
tem that relies on the virtualization features presented above. Pop-
ular commercial and open-source hypervisors – e.g., VMware ES-
X/ESXi, Hyper-V, KVM, and VirtualBox – adhere to this archi-
tectural view. Note that memory access occurs in three ways: (i)
during hypervisor initialization; (ii) by guests and devices; and (iii)
by intercept handlers triggered by the guests and devices.

Memory Access

Guests Devices

Attacker

Initialization
Intercept

Handler

Hypervisor

Memory

Hypervisor Memory

Guest Memory

Transfer of

Execution Control

Figure 1: High level view of a hypervisor.

2.2 Integrity Protection
Recall that we focus on integrity as our security objective. Note
that in Figure 1, we differentiate between two types of memory –
hypervisor memory denoted by a set of addresses M, and guest
memory. Note that M refers to both hypervisor code and data.
Integrity means that hypervisor memory is never modified by at-
tacker code. Since attacker code always runs in unprivileged mode,
integrity is ensured if hypervisor memory is only modified by code
executing in privileged mode.

More specifically, integrity means that all changes to hypervisor
memory are caused by direct action within the intended execution
of the hypervisor’s own instructions (e.g., initialization and inter-
cept handlers). Further, integrity requires that neither hypervisor
code nor data can be directly accessed via Direct Memory Accesses
(DMA) by devices. Note that shared memory pages between the
hypervisor and guests – which are writable by guests – are consid-
ered to be part of guest memory. Modification of these pages by the
attacker, therefore, does not violate integrity. Finally, we assume
that the hardware behaves in accordance with its specification.

3. THE DRIVE METHODOLOGY
In this section, we present the DRIVE methodology for hypervi-
sor design and development. We consider a virtualized system
V = (H,A,M), where H is the hypervisor, A is the attacker rep-
resenting malicious guests and devices, and M is the hypervisor
memory. As mentioned before, DRIVE consists of a set of system
properties and verification conditions, together with an argument
the these properties and verification conditions imply hypervisor
integrity. We first present the DRIVE properties and verification
conditions in detail. We end this section with the argument – see
Theorem 1 – that any hypervisor satisfying the DRIVE properties
and verification conditions has memory integrity.

3.1 DRIVE Properties
Recall that V executes in two modes – privileged and unprivileged.
The DRIVE methodology mandates four properties on V . The first
property ensures mandatory control of accesses to hypervisor mem-
ory. It is expressed as two sub-properties:

• (MAC)(a) H uses an access control mechanism to control
access to memory in unprivileged mode, and stores all state
related to the access control mechanism inM; (MAC)(b) in
unprivileged mode, the hardware ensures that all access to
memory is subjected to the access control mechanism.

The remaining three properties impose restrictions on the hypervi-
sor’s implementation and its response to the attacker’s actions.

• (CFI) The hypervisor has control flow integrity [8], i.e., the
control flow during the execution of H always respects its
source code.

• (MOD) Initialization is implemented by a function init()
and the intercept handlers are implemented by functions
ih1(), . . . , ihk().

• This property ensures the atomicity of initialization and in-
tercept handling. It is expressed by two sub-properties:
(ATOM)(a) at the start of V ’s execution, init() runs
completely in a single-threaded environment before any
other code executes; (ATOM)(b) the intercept handlers
ih1(), . . . , ihk() always execute in a single-threaded envi-
ronment.

Note that ATOM requires only privileged (i.e., hypervisor) code
to be serialized. Unprivileged code is able to exercise all available
cores and spawn as many threads as necessary. As recent CPUs
supporting hardware virtualization are designed to minimize traps
to the hypervisor when executing in unprivileged mode, ATOM
does not unacceptably degrade the hypervisor’s performance.

Figure 2 gives an architectural view of a virtualized system devel-
oped via DRIVE. Note that it is a refined version of Figure 1. In
particular, it shows that all memory accesses by the attacker are me-
diated by the access control mechanism implemented in hardware.
The mechanism checks whether the memory access is allowed by
the access control mechanism state, and either lets it proceed, or
triggers the appropriate intercept handler in H .

3.2 Sequentialization
Properties CFI, MOD and ATOM lead to a natural sequentializa-
tion of V ’s execution, denoted by Seq(V), and shown in Figure 3.
Intuitively, the first step after “power on” is initialization, during
which the memory access table is set up. Subsequently, code exe-
cutes either:

• in unprivileged mode by A, specifically, by guest code and
direct memory access (DMA) by devices; or

• in privileged mode by H , specifically, by intercept handlers
triggered by A.

Given two sequential programs f and g, let f + g denote the se-
quential program that non-deterministically executes either f or g.
Clearly + is commutative and associative. Also, for any function
f , let f(∗) denote the execution of f under an arbitrary calling
context. Then Seq(V) is defined formally as follows:

Guests Devices

Attacker

Initialization
Intercept

Handler

Hypervisor

Memory

Hypervisor Memory

Guest Memory

Access Control

State

Access Control

Mechanism

Memory Access
Transfer of

Execution Control

Access Control State Lookup

Figure 2: High level view of a virtualized system developed via
DRIVE.

DEFINITION 1 (SEQUENTIALIZATION). Seq(V) is given by
the following sequential program:

init(∗); while(true) { A() + ih1(∗) + · · ·+ ihk(∗) }

where A() corresponds to the execution of arbitrary attacker code.

3.3 Verifying Integrity
We now use Seq(V) to present our algorithm for verifying the in-
tegrity of V . Our key result, expressed in Theorem 1, is that veri-
fying the integrity of V reduces to discharging a set of verification
conditions over init(∗) and ih1(∗), . . . , ihk(∗). We begin with the
definition of integrity protected memory.

DEFINITION 2 (INTEGRITY PROTECTED MEMORY). The
hypervisor memory is said to be integrity protected iff the following
condition – denoted by ϕ(M) – holds:

ϕ(M) ≡ all memory addresses inM are designated
read-only in unprivileged mode

THEOREM 1. V is integrity protected iff the following two ver-
ification conditions hold:

1. (VC1) init(∗) ensures ϕ(M).

2. (VC2) for i ∈ [1, k], ihi(∗) preserves ϕ(M).

Proof Sketch. Recall that integrity means that the contents of hy-
pervisor memory M are only modified in privileged mode. The

Initialization

(Privileged)
Guest Code

(Unprivileged)

Intercept Handler

(Privileged)

DMA

(Unprivileged)

Figure 3: Life cycle of a DRIVE virtualized system from the
point of view of memory accesses.

forward implication is trivial since, if either VC1 or VC2 does not
hold, then there is an input x such that init(x) or ihi(x) leads to
a violation of ϕ(M). Subsequently, unprivileged code is free to
modifyM.

For the reverse implication, recall the definition of Seq(V) from
Definition 1. Note that MAC implies that the execution of the at-
tacker code A() preserves ϕ(M). Indeed, since the access control
mechanism state is itself part ofM, any attempt by A() to violate
ϕ(M) leads to the triggering of an intercept handler.

Therefore, if VC1 and VC2 holds, then from Definition 1, we know
that ϕ(M) is an inductive invariant of Seq(V). This, together with
MAC, implies that V is integrity protected.

Note that MAC is used directly in the proof of Theorem 1. The re-
maining three properties (CFI, MOD, and ATOM) are required to
define Seq(V) (Definition 1), on which the proof of Theorem 1 re-
lies as well. Thus, all DRIVE properties are necessary for the sound-
ness of our approach. Note that VC1 and VC2 can be discharged
by verifying a sequential program, even though the virtualized sys-
tem itself is concurrent. The key here is of course properties CFI,
MOD, and ATOM, which enable us to define the semantics of V
as a sequential program and subsequently prove Theorem 1.

4. USING DRIVE TO DEVELOP XMHF

In this section, we report on our experience in using DRIVE to de-
velop XMHF [65]. In particular, we show how the DRIVE properties
guide the design and development of XMHF, and how the DRIVE
verification conditions are reduced to assertions that are then auto-
matically model checked on XMHF’s source code.

4.1 XMHF Background
Architecturally, XMHF consists of an XMHFCORE and an HY-
PAPP [65]. The XMHFCORE contains the core hypervisor function-
ality (e.g., platform initialization, multi-core support, memory and
DMA protections) while the HYPAPP extends this core functionality

Guests Devices

Attacker

Memory

 Hypervisor Memory

Guest Memory

Guest Access

Control

Device Access

Control

Access

Control

Mechanism

MMU Table IOMMU Table

Access Control State

Initialization
Intercept

Handler

EMHF

Memory Access
Transfer of

Execution Control

Access Control State Lookup

Figure 4: High level view of a virtualized system based on
XMHF.

to implement a customized hypervisor. XMHF runs on commodity
hardware-virtualized x86 platforms (Intel and AMD).

XMHF supports a single guest. If the underlying hardware is multi-
core, the guest is able to utilize as many cores as it needs. All inter-
rupts are passthru to the guest. This means that the guest handles
all these interrupts directly without intervention from XMHF, result-
ing in optimal system performance. Note that this hypervisor ex-
ecution model of a single-guest with passthru interrupts resonates
with mechanisms employed by several recent research efforts in
the ad-hoc hypervisor space such as CloudVisor [72], TrustVi-
sor [50], Lockdown [66], XTRec [67], SecVisor [57], Proxos [61]
and Nizza [39]. XMHF therefore provides a common base which
helps in realizing these existing hypervisor solutions as HYPAPP
instances, while also providing memory integrity.

Figure 4 shows a high level view of a virtualized system based on
XMHF. Note that Figure 4 further refines Figure 2 by incorporating
details specific to XMHF. In particular, the access control mecha-
nism state consists of two tables – the Memory Management Unit

(MMU) table 1, and the Input Output Memory Management Unit
(IOMMU) table.

Each core on a hardware-virtualized x86 CPU executes in either
host-mode (where the hypervisor executes) or guest-mode (where
the guest executes). In either mode, the hardware uses the IOMMU
table to determine if a DMA transfer by a particular device is al-
lowed. If a violation of the IOMMU permissions is observed, the
hardware disallows the requested DMA. In contrast, the hardware
enforces MMU table access control only in guest mode. In par-
ticular, the hardware ensures that all memory accesses by guest in-
structions go via a two-level translation in the presence of the MMU
table. First, the virtual address supplied by the guest is translated to
a guest physical addresses using guest paging structures. Next, the
guest physical addresses are translated into the actual system phys-
ical addresses using the permissions specified within the MMU ta-
ble. If the access requested by the guest violates the permissions
stored in the MMU table, the hardware triggers an npf exception.

4.2 Mechanisms to Ensure DRIVE Properties
At system startup, XMHF is loaded via a dynamic-launch opera-
tion [42] – a feature available on commodity x86 CPUs. Using
dynamic-launch ensures that the XMHF loader code executes in a
hardware-protected environment, which in turn transfers control
to the XMHFCORE runtime. The runtime initializes the hypervi-
sor memory such that ϕ(M) (see Definition 2) holds, switches the
CPU execution to guest-mode, and starts executing the guest. We
now describe how XMHF ensures MAC, CFI, MOD, and ATOM.

4.2.1 Ensuring MAC
For MAC (a), XMHF uses the MMU table and the IOMMU table
to store memory access permissions for guests and devices, respec-
tively. In addition, XMHF ensures that both MMU and IOMMU
tables reside in the hypervisor memoryM. Thus, as shown in Fig-
ure 4, the access control mechanism is logically partitioned into two
sub-mechanisms, one for guests (that uses the MMU table) and the
other for devices (that relies on the IOMMU table).

XMHF ensures MAC (b) by a combination of system initialization,
runtime intercept handling, and hardware semantics. Recall that
IOMMU and MMU tables can only be initialized and activated by
software running on the CPU in host-mode. However, the IOMMU
table access control protections are enforced by the hardware for
all devices in the system in both guest and host modes. In con-
trast, MMU access control protections are enforced by a CPU core
only when the core is operating in guest-mode. On x86 (and ARM)
platforms, only one core – called the boot-strap processor (BSP)
– is enabled when the system starts. The other cores are placed
in a halted state until activated by software running on the BSP.
The BSP starts up devoid of any memory protections. During its
initialization, XMHF switches the BSP to host-mode and sets up
the IOMMU table. This ensures that IOMMU access control re-
mains enabled in all future system states. XMHF then activates the
remaining cores in the system and switches them to host-mode as
well. Next, XMHF sets up the MMU table on all the cores and
switches the BSP to guest-mode to boot the guest operating sys-
tem; the remaining cores idle in host-mode. Finally, XMHF uses
intercept handling to ensure that the remaining cores are switched
to guest-mode before they execute guest code. This scheme ensures
that MMU access control is always enabled for all CPU cores in the

1The MMU table is called the “Nested Page Table” and the “Ex-
tended Page Table” on AMD and Intel platforms, respectively.

ihub()

ih_ioio()

ih_msr()

ih_npf()

ih_dbexception()

ih_init()

ih_vmmcall()

ih_nmi()

setprot()

Figure 5: Partial call graph of the top-level intercept handler
ihub() in XMHF. The function setprot() is used to make all
changes to the MMU and IOMMU tables.

system. The exact details behind this process are presented later in
Section 4.3.

4.2.2 Ensuring CFI
We assume that XMHF satisfies CFI, i.e., it has control flow in-
tegrity. Since XMHF is implemented in C, we believe that existing
techniques [8] are capable of discharging this assumption.

4.2.3 Ensuring MOD
MOD is ensured by organizing the source code of XMHF to make
the implementations of init() and ih1(), . . . , ihk() modular. We
now present this step in more detail.

The name of the init() function in XMHF is
emhf_runtime_main(). This function first performs re-
quired platform initialization, initializes memory such that ϕ(M)
holds, then switches the boot-strap processor (BSP) to guest-mode
before starting the guest.

XMHF has a single top-level intercept handler function called
emhf_parteventhub_intercept_handler. For brevity,
we refer to this function as ihub(). This function is called when-
ever one of the following seven intercepts2 is triggered:

• ioio- for I/O port interception;

• msr - for trapping accesses to critical CPU model specific
registers;

• npf- for handling nested page faults;

• dbexception- for ensuring guest-mode execution (see
Section 4.3);

• init - for handling guest shutdown and restarts;

• vmmcall - for handling guest hypercalls; and

• nmi- for ensuring ATOM (see Section 4.2.4).
2Current x86 hardware allow intercepting additional intercepts
(e.g., intercept on task-switch, execution of certain instructions
etc.). However, these seven intercepts suffice to ensure properties
MAC, CFI, MOD, and ATOM, and to discharge VC1 and VC2.

The arguments of ihub() indicate the actual interrupt that was trig-
gered. Based on the value of these arguments, ihub() executes an
appropriate sub-handler. For simplicity, we refer to the sub-handler
that handles intercept e as ih_e(). Figure 5 shows a partial call-
graph for ihub() highlighting the sub-handlers, and a special func-
tion setprot() used to discharge VC1 on XMHF (see Section 4.4
for more details).

As mentioned before, the npf intercept indicates a violation of
MMU table permissions by a guest memory access. The nmi in-
tercept is used to ensure ATOM (b), and the dbexception inter-
cept is used to ensure MAC (b) on multi-core hardware. These are
discussed in more detail later.

4.2.4 Ensuring ATOM
ATOM (a) is ensured by initially boot-strapping XMHF using a
dynamic-launch operation. Dynamic-launch is a capability on
current x86 (AMD and Intel) platforms that allows an arbitrary
piece of code to execute in isolation from everything else on the
system except for the CPU, memory, and chipset. The use of
dynamic-launch and the launched code is securely recorded in the
Trusted Platform Module (TPM) [36]. Further, the environment af-
ter dynamic-launch does not allow any interrupts or asynchronous
executions.

ATOM (b) is ensured by XMHF using a mechanism called core
quiescing, which is implemented as follows. Suppose an intercept
e is triggered on a specific core C. If e is nmi, then ih_e() is
implemented to be an idle loop. Otherwise, the first thing done
by ih_e() is to send a Non-Maskable Interrupt (NMI) to all cores
other than C. Since the NMI cannot be masked, this causes all these
other cores to execute ih_nmi(). Since ih_nmi() is an idle loop,
in effect, all these other cores stall. ih_e() then handles e properly,
and finally reactivates the other cores before resuming the guest.

4.3 Verifying Guest-Mode Execution
Recall that to ensure MAC (b), we must ensure that each core is set
to execute in guest-mode before it executes any attacker code (Sec-
tion 4.2.1). As mentioned before, on a single core CPU, XMHF’s
init() code switches the BSP core to guest-mode before booting
the OS. For a multi core CPU XMHF then activates the remaining
cores in the system and switches them to host-mode which then
idle within XMHF. Finally, XMHF uses the hardware’s multi-core
bring-up logic and intercept handling to ensure that the remaining
cores are also switched to guest-mode before they execute guest
code. We now describe this process in more detail in the context of
commodity x86 platforms.

To bring a new core C online, the guest sends a startup inter-
processor interrupt (SIPI) to C. However, on current x86 platforms,
the default operating mode of C in response to a SIPI does not
include any memory protections. Therefore, XMHF intercepts the
SIPI and switches C to guest-mode before handing back execution
to the guest. For x86 platforms, a SIPI interrupt is delivered to C
via the CPU Local Advanced Programmable Interrupt Controller
(LAPIC). Specifically, the LAPIC has an Interrupt Control Regis-
ter (ICR) that is used to deliver the SIPI to C.

To support both Intel and AMD x86 platforms, XMHF uses a uni-
fied scheme to intercept guest multi-core activation. On both Intel
and AMD hardware-virtualized platforms, the LAPIC registers are
accessed via memory-mapped I/O. The memory-mapped I/O re-
gion typically encompasses a single physical memory page. XMHF

//top-level intercept handler
//x specifies triggered intercept
void ihub(int x)
{
#ifdef VERIFY
int pre_npfe = NPFELAPIC_TRIGGERED(x);
int pre_dbe = DBE_TRIGGERED(x);

#endif
...
//main body of ihub
...

#ifdef VERIFY
assert (!pre_npfe || GUEST_TRAPPING(x));
assert (!pre_dbe || CORE_PROTECTED(x));

#endif
}

Figure 6: Outline of ihub(), which is the top-level intercept
handler function. Macro DBE_TRIGGERED(x) evaluates to
true iff x indicates that the dbexception intercept was trig-
gered. Macro NPFELAPIC_TRIGGERED(x) evaluates to true
iff x indicates that the npf intercept was triggered in response
to the guest accessing the LAPIC memory-mapped I/O page.
Macro GUEST_TRAPPING(x) evaluates to true iff the core
identified by x has interrupts disabled and is set to generate a
dbexception intercept. Macro CORE_PROTECTED(x) eval-
uates to true iff the core identified by x is switched to guest-
mode.

leverages memory integrity to trap and intercept any changes to the
LAPIC memory-mapped I/O page by the guest. More specifically,
XMHF maps the LAPIC ICR to a page in its own memoryM during
initialization.

Subsequently, assuming ϕ(M) holds, any writes to the LAPIC ICR
by the guest causes the hardware to trigger a npf intercept. XMHF-
CORE handles the npf intercept, disables guest interrupts and sets
the guest trap-flag and resumes the guest. This causes the hard-
ware to immediately trigger a dbexception intercept, which is
then handled by XMHFCORE to process the instruction that caused
the write to the LAPIC ICR. If a SIPI command was being written
to the ICR, XMHF voids the instruction and instead runs the target
guest code on that core in guest-mode.

Thus, ensuring MAC (b) on multi-core CPUs reduces to verifying
that: (i) ih_npf() disables guest interrupts and sets the guest trap-
flag on access to the LAPIC memory-mapped I/O page, and (ii)
ih_dbexception() prevents write to LAPIC ICR on detecting
a SIPI command and instead runs the target guest code on C in
guest-mode.

The key insight is that this property can be verified by proving the
validity of a properly inserted assertion in XMHF. Specifically, we
engineer the verification as follows. Figure 6 shows the outline of
the ihub() function. Note the inserted assertion checks that the
appropriate core is switched to guest-mode if the dbexception
intercept is triggered. In our experiments, we use CBMC [19] to
perform this model checking step. Our experiments and results are
presented in detail in Section 4.6.

Note that the statements added to ihub() are for verification pur-
poses only. They are eliminated by the preprocessor while compil-

//set permission of address a to p
void setprot(int a,int p)
{
...
//the following assertion preceeds every
//statement that sets permission of
//address a to p

#ifdef VERIFY
assert (a < HVLO && a > HVHI);

#endif
...

}

Figure 7: Outline of function setprot(), which is used to
make all changes to the MMU and IOMMU tables.

ing the production version of XMHF, ensuring that no unnecessary
statement is executed at runtime.

4.4 Discharging Verification Conditions
VC1 is discharged by manually inspecting the
emhf_runtime_main function of XMHF. Recall that this
function is the init() for XMHF. In particular, we manually
verified that the function assigns each entry in the MMU table and
the IOMMU table such that all addresses in M are designated
read-only.

In the context of XMHF, discharging VC2 reduces to verifying that
the execution of ihub() preserves ϕ(M). We discharge this veri-
fication condition via software model checking. In particular, we
verify that the execution of ihub() does not modify permissions of
any address inM. Again, the key insight is that this property can
be verified by proving the validity of a properly inserted assertion
in XMHF. Specifically, we engineer the verification as follows:

1. The hypervisor memory is maintained in a contiguous set
of addresses beginning at HVLO and ending at HVHI. This
means that preserving ϕ(M) reduces to ensuring that per-
missions of memory addresses between HVLO and HVHI are
unaltered.

2. All changes to MMU and IOMMU tables are performed in
a function called setprot(). Figure 7 shows the outline
of setprot(). Note that every statement that potentially
modifies the permission of a memory address a is preceded
by an assertion that checks that a < HVLO ∧ a > HVHI.

Therefore, we discharge VC2 by verifying that no execution
of ihub() leads to the failure of the assertion embedded in
setprot(). Once again, we used CBMC to check the validity of
this assertion. Our experiments and results are presented in detail
in Section 4.6.

Again, note that the assertions inserted in setprot() are for ver-
ification purposes only. They are eliminated by the preprocessor
while compiling the production version of XMHF, ensuring that
there are no unnecessary assertion checks at runtime.

4.5 Development Compatible Verification
The mechanisms used to ensure properties MAC (a), CFI, MOD,
and ATOM discussed in Section 4.2 are independent of XMHF’s

EMHF

Modified

EMHF
Instrumentation

Counterexample

showing assertion

violation

Modified EMHF

with assertions

added to ihub()

and setprot()

Software

CBMC

Software

Model

Checking with

CBMC

violation

Figure 8: Overview of Development Compatible Verification
for XMHF.

implementation. They depend either on the hardware or on design
choices embedded in XMHF. These mechanisms do not change dur-
ing XMHF’s development, and are therefore development compati-
ble. We now discuss how the verification of guest-mode execution
– i.e., MAC (b) – and the discharging of verification conditions
were both achieved in a development compatible manner for XMHF.

Development Compatible Verification of Guest-Mode
Execution. Recall our approach to verify guest-mode execution
presented in Section 4.3. Note that verification of ihub() requires
no user-supplied invariants or annotations. Therefore, after any
change to XMHF’s implementation, we are able to re-verify ihub()
with minimal manual effort. In particular, if there are no changes
to ihub(), then we simply repeat the verification with CBMC. If
there are changes to ihub(), we ensure that ihub() is consistent
with Figure 6 before re-verifying with CBMC. Hence, our approach
to verify guest-mode execution is development compatible.

Development Compatible Discharging of Verification
Conditions. Recall our approach to discharge VC1 and VC2 on
XMHF presented in Section 4.4. Although VC1 is discharged man-
ually, it requires inspection of a small piece of code (approximately
400 SLOC), and is therefore development compatible. Also, the
discharging of VC2 requires no user-supplied invariants or anno-
tations. Therefore, after any change to XMHF’s implementation,
we are able to re-discharge VC2 with minimal manual effort. In
particular, if there are no changes to setprot(), then we simply
re-verify ihub() using CBMC. If there are changes to setprot(),
we ensure that setprot() is consistent with Figure 7 before re-
verifying ihub() with CBMC. Hence, our approach to discharge
VC2 is development compatible as well.

Figure 8 shows the overall development compatible verification ap-
plied to XMHF. The instrumentation was done manually but was
trivial for the vast majority of modifications to XMHF since they
did not alter ihub() or setprot().

4.6 Experimental Results
In this section, we report on our experiments to discharge the two
verification conditions VC1 and VC2, as well as to verify guest-
mode execution in XMHF. As discussed earlier (see Sections 4.3
and 4.4), these verification problems were reduced to providing the

validity of assertions in a sequential C program P . We now de-
scribe our experience in using several publicly available software
model checkers to verify P . All experiments were performed on a
2 GHz machine with a time limit of 1800 seconds and a memory
limit of 10GB.

Experience with CBMC . CBMC [19] is a bounded model
checker for verifying ANSI C programs. It supports advanced
C features like overflow, pointers, and function pointers, and is
therefore uniquely suited to verify system software such as XMHF.
CBMC is only able to verify programs without unbounded loops.
While XMHF contains such loops in general, all reachable loops
in P are bounded. During verification of P , CBMC automati-
cally sliced away unreachable code and unrolled the remaining
(bounded) loops.

The version of CBMC available publicly when we began our ex-
periments was 4.0. This version had trouble handling two C fea-
tures that are used in P – function pointers and typecasts from byte
arrays to structs. We believe that these features are prevalent in
system software in general. We contacted CBMC developers about
these issues, and they incorporated fixes in the next public release
CBMC 4.1 (the latest public release as of this writing). CBMC 4.1
verifies P successfully.

We also seeded errors in P to create ten additional buggy programs.
Four of the buggy programs (PM

1 – PM
4) contain memory errors

that deference unallocated memory. The remaining six buggy pro-
grams (PL

1 – PL
6) have logical errors that cause assertion viola-

tions. In each case, CBMC 4.1 finds the errors successfully. Table 1
summarizes the overall results for CBMC 4.1. Note that the SAT in-
stances produced are of non-trivial size, but are solved by the back-
end SAT solver used by CBMC in about 25 seconds each. Also,
about 75% of the overall time is required to produce the SAT in-
stance. This includes time for parsing, transforming the program to
an internal representation (called a GOTO program), slicing, sim-
plification, and generating the SAT formula.

Experience with Other Model Checkers. We also tried to
verify P and the ten buggy programs with three other publicly
available software model checkers that target C code – BLAST [41],
SATABS [21], and WOLVERINE [47]. In each case, we used the
latest publicly available version of the model checker. All these
model checkers are able to verify programs with loops and use
an approach called Counterexample Guided Abstraction Refine-
ment (CEGAR) [13, 20] combined with predicate abstraction [35].
BLAST 2.5 could not parse any of the target programs. In contrast,
SATABS 3.1 timed out in all cases after several iterations of the CE-
GAR loop. On the other hand, WOLVERINE 0.5c ran out of memory
in all cases during the first iteration of the CEGAR loop. Further
details are presented in Table 1.

BLAST only accepts preprocessed C code. Therefore, to provide
consistent input to all model checkers, we first preprocessed XMHF
source code with gcc. This resulted in about 237 KLOC for each
of our eleven target programs, even though the actual XMHF imple-
mentation is about 4700 LOC.

5. RELATED WORK
A sound architecture [15, 59] is known to be essential for the de-
velopment of high quality software. Moreover, there has been a

Program CBMC 4.1 SATABS 3.1 WOLVERINE 0.5c
OP SP VCC Vars CLS DPT Time Mem Iter Mem Iter Time

P 1654 1452 111 437688 1560024 24.813 75.75 1958 56 594 1 168.47
PM
1 1667 1465 116 438172 1561191 26.964 80.85 1959 56 594 1 168.52

PM
2 1668 1466 116 438308 1561585 24.840 78.76 1959 56 594 1 168.60

PM
3 1669 1467 116 438436 1561919 24.823 78.96 1910 56 594 1 297.17

PM
4 1653 1451 117 463813 1668782 25.707 79.85 1910 56 594 1 247.28

PL
1 1679 1477 111 476241 1728039 28.325 81.90 1910 56 594 1 168.64

PL
2 1654 1452 111 437538 1559556 24.894 78.77 1910 56 594 1 205.72

PL
3 1652 1450 111 437676 1559956 24.789 78.90 1910 56 594 1 296.91

PL
4 1634 1441 111 437684 1560013 24.983 78.74 1910 56 594 1 173.81

PL
5 1652 1450 111 437687 1560021 24.532 77.70 1910 56 594 1 281.44

PL
6 1652 1450 111 437686 1560018 24.672 78.80 1958 56 594 1 275.40

Table 1: Summary of experimental results with CBMC, SATABS, and WOLVERINE. OP = number of assignments before slicing; SP
= number of assignments after slicing; VCC = number of VCCs after simplification; Vars = number of variables in SAT formula;
CLS = number of clauses in SAT formula; DPT = time (sec) taken by SAT solver; Time = total time (sec); Mem = maximum memory
(MB); in all cases, SATABS timed out and WOLVERINE ran out of memory; Iter = number of CEGAR iterations that were started
before time or memory out.

body of work in using architectural constraints to not only to drive
the analysis of important quality attributes – but also to make such
analysis more tractable [69]. Our work reaffirms these ideas, and
demonstrates concretely the synergy between – and importance of
– architecture and analysis in the context of developing an integrity-
protected hypervisor.

The idea of an interface constrained adversary [26, 32] has been
used to model and verify security properties of a number of differ-
ent classes of systems. In particular, pinning down the attacker’s
interface enables systematic and rigorous reasoning about security
guarantees. This idea appears in our work as well. Specifically,
restricting the attacker’s interface with the hypervisor to a set of
intercept handlers is crucial for the feasibility of DRIVE.

Control flow integrity (CFI) is one of the key system properties on
which DRIVE relies. Techniques for ensuring CFI [8] have been
widely studied and implemented. In essence, all source code anal-
ysis techniques assume CFI in some form. We therefore consider
CFI to be an important but complementary problem.

There has been considerable work on verifying security at the level
of models. For example, Guttman et al. [37] employ model check-
ing to verify information-flow properties of SELinux. Lie et al. ver-
ify XOM [48] using MURPHI3. XOM is a hardware-based approach
for tamper-resistance and copy-resistance. Mitchell et al. [51, 52]
use MURPHI to verify the correctness of (and find bugs in) security
protocol specifications. Franklin et al [29, 30] have developed a set
of techniques for parametric verification of security properties of
models of hypervisors. In contrast, we focus on verifying security
at the level of source-code.

A number of projects have used software model checking and static
analysis to find errors in source code, without a specific attacker
model. Some of these projects [18, 38, 71] target a general class of
bugs. Others focus on specific types of errors, e.g., Kidd et al. [44]
detect atomic set serializability violations, while Emmi et al. [27]
verify correctness of reference counting implementation. All these
approaches require abstraction, e.g., random isolation [44] or pred-
icate abstraction [27], to handle source code, and therefore, are un-

3http://verify.stanford.edu/dill/murphi.html

sound and/or incomplete. In contrast, our focus is on a methodol-
ogy to develop a hypervisor that achieves a specific security prop-
erty against a well-defined attacker.

Finally, there has been several research projects on security of oper-
ating system and hypervisor implementations. Neumann et al. [53],
Rushby [56], and Shapiro and Weber [58] propose verifying the
design of secure systems by manually proving properties using
a logic and without an explicit adversary model. A number of
groups [40, 45, 68] have employed theorem proving to verify se-
curity properties of OS implementations. Barthe et al. [14] formal-
ized an idealized model of a hypervisor in the Coq proof assistant
and Alkassar et al. [9, 10] and Baumann et al. [16] annotated the
C code of a hypervisor and utilized the VCC [22] verifier to prove
correctness properties. Approaches based on theorem proving are
applicable to a more general class of properties, but also require
considerable manual effort. For example, the verification of the
SEL4 operating system [45] required several man years effort. In
contrast our approach is more automated but focuses on the spe-
cific property of memory integrity. Franklin’s thesis [31] reports
initial results on using CBMC to model check integrity properties of
related small-TCB hypervisors’ runtimes (300 LOC). This work
demonstrates that CBMC can be used to check integrity properties
with very little manual input for a much larger hypervisor runtime
(4700 LOC).

6. DISCUSSION AND CONCLUSION
We presented an approach, called DRIVE, to design, develop and
automatically verify integrity-protected hypervisors. We also vali-
dated DRIVE by using it to develop an extensible and modular hy-
pervisor framework called XMHF [65]. In particular, the verifica-
tion steps involved were performed on the actual source code of
XMHF– consisting of about 4700 lines of C code – using the CBMC
model checker. Our experience suggests that DRIVE is applicable
to develop integrity-protected hypervisors of realistic complexity.

Of the software model checkers that we experimented with, CBMC
was the only one that succeeded in the verification tasks posed by
XMHF and DRIVE. We believe that this is due to a combination
of two factors: (i) the reachable code in XMHF had only bounded
loops – CBMC would fail if this was not the case; (ii) CBMC models

C programs at the bit-level and performs no abstraction. Other soft-
ware model checkers that we tried kept iterating their abstraction-
refinement loops till they ran out of time or memory.

We believe that several factors contribute to enable automated ver-
ification with DRIVE, particularly in the case of XMHF. First, even
though a virtualized system is inherently concurrent, the verifica-
tion conditions of DRIVE are discharged by analyzing only sequen-
tial programs. Verification of sequential programs is understood to
be more tractable. Second, XMHF is implemented in C, and several
model checkers for sequential C programs are publicly available.
Finally, we were able to engineer the verification process to be de-
velopment compatible – it was repeated automatically and routinely
as part of XMHF’s build process.

The system properties and verification conditions required by
DRIVE are sufficient to guarantee memory integrity. However, we
have not proven them to be necessary. Nevertheless, they serve as a
useful checklist for reasoning about the integrity of other hypervi-
sors as well. If a certain hypervisor satisfies the DRIVE properties
and verification conditions, then, by Theorem 1, it is also integrity
protected. If, on the other hand, it violates a certain property or ver-
ification condition, then the failure offers a starting point to detect
integrity-related vulnerabilities.

We believe that DRIVE provides a good starting point for research
and development on hypervisors with rigorous and “designed-in”
security guarantees. One direction for future work is to extend
DRIVE to other security properties, such as confidentiality. An im-
mediate challenge here is that such a property may not be as easily
expressible as integrity since the attacker’s interface is much less
well-defined due to the possibility of covert channels etc. Yet an-
other direction is to develop a hypervisor that supports multiple
guests. The question here is whether DRIVE still guarantees in-
tegrity in such situations, and if not, how it must be updated so that
integrity is assured.

7. REFERENCES
[1] Elevated privileges. CVE-2007-4993, 2007.
[2] Multiple integer overflows allow execution of arbitrary code.

CVE-2007-5497, 2007.
[3] The CPU hardware emulation does not properly handle the

Trap flag. CVE-2008-4915 (under review), 2008.
[4] Directory traversal vulnerability in the shared folders feature.

CVE-2008-0923 (under review), 2008.
[5] Heap-based buffer overflow in Xen 3.3, when compiled with

the XSM:FLASK module, allows unprivileged domain users
(domU) to execute arbitrary code via the flaskop hypercall.
CVE-2008-3687, 2008.

[6] Multiple buffer overflows in openwsman allow remote
attackers to execute arbitrary code. CVE-2008-2234, 2008.

[7] VMware patches for ESX and ESXi resolve a critical
security vulnerability. VMSA-2009-0006, 2009.

[8] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti.
Control-Flow Integrity principles, implementations and
applications. ACM Transactions on Information and System
Security, 13(1), 2009.

[9] E. Alkassar, E. Cohen, M. A. Hillebrand, M. Kovalev, and
W. J. Paul. Verifying shadow page table algorithms. In Proc.
of FMCAD, 2010.

[10] E. Alkassar, M. A. Hillebrand, W. J. Paul, and E. Petrova.
Automated Verification of a Small Hypervisor. In Proc. of

VSTTE, volume 6217, 2010.
[11] AMD Inc. Amd64 architecture programmer’s manual

volume 2: System programming. 2011.
[12] ARM Limited. Virtualization extensions architecture

specification. http://infocenter.arm.com, 2010.
[13] T. Ball and S. K. Rajamani. Automatically Validating

Temporal Safety Properties of Interfaces. In Proc. of SPIN,
2001.

[14] G. Barthe, G. Betarte, J. D. Campo, and C. Luna. Formally
Verifying Isolation and Availability in an Idealized Model of
Virtualization. In Proc. of FM, 2011.

[15] L. Bass, P. Clements, and R. Kazman. Software Architecture
in Practice. Addison Wesley, 2003.

[16] C. Baumann, H. Blasum, T. Bormer, and S. Tverdyshev.
Proving memory separation in a microkernel by code level
verification. In Proc. of AMICS, 2011.

[17] D. Bell and L. La Padula. Secure Computer Systems: A
Refinement of the Mathematical Model. Technical Report
MTR-2547, Vol 3, MITRE Corp., 1974.

[18] H. Chen and D. Wagner. MOPS: an infrastructure for
examining security properties of software. In Proc. of CCS,
2002.

[19] E. Clarke, D. Kroening, and F. Lerda. A Tool for Checking
ANSI-C Programs. In Proc. of TACAS, 2004.

[20] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement for symbolic
model checking. Journal of the ACM (JACM), 50(5), 2003.

[21] E. M. Clarke, D. Kroening, N. Sharygina, and K. Yorav.
SATABS: SAT-Based Predicate Abstraction for ANSI-C. In
Proc. of TACAS, 2005.

[22] E. Cohen, M. Dahlweid, M. A. Hillebrand, D. Leinenbach,
M. Moskal, T. Santen, W. Schulte, and S. Tobies. VCC: A
Practical System for Verifying Concurrent C. In Proc. of
TPHOLs, 2009.

[23] F. J. Corbato and C. T. Clingen. A managerial view of the
multics system development. In Conference on Research
Directions in Software Technology, 1977.

[24] F. J. Corbato, J. H. Saltzer, and C. T. Clingen. Multics – the
first seven years. In Spring Joint Computer Conference,
1972.

[25] S. Crosby and D. Brown. The virtualization reality. ACM
Queue, 4(10), 2006.

[26] A. Datta, J. Franklin, D. Garg, and D. K. Kaynar. A Logic of
Secure Systems and its Application to Trusted Computing. In
Proc. of IEEE S&P, 2009.

[27] M. Emmi, R. Jhala, E. Kohler, and R. Majumdar. Verifying
Reference Counting Implementations. In Proc. of TACAS,
2009.

[28] L. Fraim. SCOMP: A solution to the multilevel security
problem. In IEEE Computer, 1983.

[29] J. Franklin, S. Chaki, A. Datta, J. M. McCune, and
A. Vasudevan. Parametric Verification of Address Space
Separation. In Proc. of POST, 2012.

[30] J. Franklin, S. Chaki, A. Datta, and A. Seshadri. Scalable
Parametric Verification of Secure Systems: How to Verify
Reference Monitors without Worrying about Data Structure
Size. In Proc. of IEEE S&P, 2010.

[31] J. D. Franklin. Abstractions for model checking system
security. Technical report CMU-CS-12-113, School of
Computer Science, Carnegie Mellon University, 2012.
http://reports-archive.adm.cs.cmu.edu/anon/2012/CMU-CS-

12-113.pdf.
[32] D. Garg, J. Franklin, D. K. Kaynar, and A. Datta.

Compositional System Security with Interface-Confined
Adversaries. Electronic Notes in Theoretical Computer
Science, 265, 2010.

[33] V. Gligor, C. Burch, R. Chandersekaran, L. Chanpman,
M. Hecht, W. Jiang, G. Luckenbaugh, and N. Vasudevan. On
the Design and the Implementation of Secure Xenix
Workstations. In Proc. of IEEE S&P, 1986.

[34] V. D. Gligor. Design and implementation of secure XENIX.
IEEE Transactions on Software Engineering, 13(2), 1987.

[35] S. Graf and H. Saïdi. Construction of Abstract State Graphs
with PVS. In Proc. of CAV, 1997.

[36] T. C. Group. Trusted platform module main specification,
Version 1.2, Revision 103, 2007.

[37] J. D. Guttman, A. L. Herzog, J. D. Ramsdell, and C. W.
Skorupka. Verifying information flow goals in
security-enhanced linux. Journal of Computer Security,
13(1), 2005.

[38] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and
language for building system-specific, static analyses. In
Proc. of PLDI, volume 37(5), 2002.

[39] H. Härtig, M. Hohmuth, N. Feske, C. Helmuth,
A. Lackorzynski, F. Mehnert, and M. Peter. The Nizza
Secure-System Architecture. In IEEE CollaborateCom,
2005.

[40] C. L. Heitmeyer, M. Archer, E. I. Leonard, and J. D.
McLean. Formal specification and verification of data
separation in a separation kernel for an embedded system. In
Proc. of ACM CCS, 2006.

[41] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
Abstraction. In Proc. of POPL, 2002.

[42] Intel Corporation. Intel trusted execution technology –
software development guide. Document number
315168-005, June 2008.

[43] Intel Corporation. Intel 64 and IA-32 Architectures Software
Developer’s Manual Combined Volumes:1, 2A, 2B, 2C, 3A,
3B, and 3C. 2011.

[44] N. Kidd, T. Reps, J. Dolby, and M. Vaziri. Finding
Concurrency-Related Bugs Using Random Isolation. In
Proc. of VMCAI, 2009.

[45] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski,
M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4:
formal verification of an OS kernel. In Proc. of SOSP, 2009.

[46] K. Kortchinsky. Cloudburst: A VMware guest to host escape
story. Black Hat, 2009.

[47] D. Kroening and G. Weissenbacher. Interpolation-Based
Software Verification with Wolverine. In Proc. of CAV, 2011.

[48] D. Lie, J. Mitchell, C. A. Thekkath, and M. Horowitz.
Specifying and Verifying Hardware for Tamper-Resistant
Software. In Proc. of IEEE S&P, 2003.

[49] P. K. Manadhata and J. M. Wing. An attack surface metric.
IEEE Trans. Software Eng., 37(3), 2011.

[50] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor,
and A. Perrig. TrustVisor: Efficient TCB Reduction and
Attestation. In Proc. of IEEE S&P, 2010.

[51] J. C. Mitchell, M. Mitchell, and U. Stern. Automated
Analysis of Cryptographic Protocols Using Murϕ. In Proc.
of IEEE S&P, 1997.

[52] J. C. Mitchell, V. Shmatikov, and U. Stern. Finite-State

Analysis of SSL 3.0. In Proceedings of the Seventh USENIX
Security Symposium, pages 201–216, 1998.

[53] P. Neumann, R. Boyer, R. Feiertag, K. Levitt, and
L. Robinson. A provably secure operating system: The
system, its applications, and proofs. Technical report, SRI
International, 1980.

[54] G. J. Popek and R. P. Goldberg. Formal requirements for
virtualizable third generation architectures. Comm. ACM, 17,
1974.

[55] T. Roscoe, K. Elphinstone, and G. Heiser. Hype and virtue.
In Proceedings of the Workshop on Hot Topics in Operating
Systems, 2007.

[56] J. M. Rushby. Design and Verification of Secure Systems. In
Proc. of SOSP, 1981.

[57] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor: A Tiny
Hypervisor to Provide Lifetime Kernel Code Integrity for
Commodity OSes. In Proc. of SOSP, 2007.

[58] J. S. Shapiro and S. Weber. Verifying the EROS Confinement
Mechanism. In Proc. of IEEE S&P, 2000.

[59] M. Shaw and D. Garlan. Software architecture - perspectives
on an emerging discipline. Prentice Hall, 1996.

[60] R. E. Smith. Cost profile of a highly assured, secret
generating system. 4(1), 2001.

[61] R. Ta-Min, L. Litty, and D. Lie. Splitting Interfaces: Making
Trust Between Applications and Operating Systems
Configurable. In Proc. of SOSP, 2006.

[62] U.S. Department of Defense. Trusted computer systems
evaluation criteria. (Orange Book) CSC-STD-001-83, DoD
Computer Security Center, 1983.

[63] U.S. Department of Defense. Trusted computer systems
evaluation criteria. (Orange Book) 5200.28-STD, National
Computer Security Center, 1985.

[64] U.S. Department of Defense. Rating maintenance phase
program document version 2. Technical Report
NCSC-TG-013-95, National Computer Security Center,
1995.

[65] A. Vasudevan, J. M. McCune, and J. Newsome. "It’s an app.
It’s a hypervisor. It’s a hypapp.": Design and Implementation
of an eXtensible and Modular Hypervisor Framework.
Technical Report CMU-CyLab-12-014, CMU CyLab, 2012.

[66] A. Vasudevan, B. Parno, N. Qu, V. D. Gligor, and A. Perrig.
Lockdown: A Safe and Practical Environment for Security
Applications. Technical Report CMU-CyLab-09-011, CMU
CyLab, 2009.

[67] A. Vasudevan, N. Qu, and A. Perrig. XTRec: Secure
Real-time Execution Trace Recording on Commodity
Platforms. In Proc. of HICSS, 2011.

[68] B. J. Walker, R. A. Kemmerer, and G. J. Popek. Specification
and verification of the UCLA Unix security kernel.
Communications of the ACM (CACM), 23(2), 1980.

[69] K. Wallnau. Volume III: A Technology for Predictable
Assembly from Certifiable Components. Technical report
CMU/SEI-2003-TR-009, Software Engineering Institute,
Carnegie Mellon University, 2003.

[70] R. Wojtczuk. Detecting and preventing the Xen hypervisor
subversions. Invisible Things Lab, 2008.

[71] J. Yang, P. Twohey, D. R. Engler, and M. Musuvathi. Using
model checking to find serious file system errors. In Proc. of
OSDI, 2004.

[72] F. Zhang, J. Chen, H. Chen, and B. Zang. CloudVisor:
retrofitting protection of virtual machines in multi-tenant

cloud with nested virtualization. In Proc. of SOSP, 2011.

